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Abstract 
 

The present work addresses the challenging problem of coordinating power allocation with 

interference management in multi-robot networks by applying the promising expansion 

capabilities of multiple-input multiple-output (MIMO) and full duplex systems, which 

achieves it for maximizing the throughput of networks under the impacts of Doppler 

frequency shifts and external jamming. The proposed power allocation with interference 

coordination formulation accounts for three types of the interference, including cross-tier, 

co-tier, and mixed-tier interference signals with cluster head nodes operating in different 

full-duplex modes, and their signal-to-noise-ratios are respectively derived under the impacts 

of Doppler frequency shifts and external jamming. In addition, various optimization 

algorithms, including two centralized iterative optimization algorithms and three 

decentralized optimization algorithms, are applied for solving the complex and non-convex 

combinatorial optimization problem associated with the power allocation and interference 

coordination. Simulation results demonstrate that the overall network throughput increases 

gradually to some degree with increasing numbers of MIMO antennas. In addition, increasing 

the number of clusters to a certain extent increases the overall network throughput, although 

internal interference becomes a severe problem for further increases in the number of clusters. 

Accordingly, applications of multi-robot networks require that a balance should be preserved 

between robot deployment density and communication capacity. 
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1. Introduction 

Explosive growth in the use of collaborative groups of multi-robots has occurred over the 

past two decades in applications such as reconnaissance and surveillance [1], patrol [2], and 

search and rescue [3] tasks, which have increasingly depended on the reliable capability of 

exchanging data between the individual robot entities via wireless multi-robot networks [4]. 

Moreover, establishing reliable and continuous communication links between each cluster of 

multi-robots is essential for ensuring rapid deployment and flexible configuration and 

reconfiguration of robot clusters during mission execution, especially in the disaster areas or 

battlefield. Multi-robot networks are further essential for ensuring the exchange of 

information between clusters when clusters regroup, and for supporting data transmission with 

centralized facilities via downlinks and uplinks [5].  

However, among the most critical issues confronting multi-robot networks are the 

restricted energy capacity of robot communication devices and the means of efficiently 

managing their power consumption [6]. These issues are denoted as resource sharing problems 

in energy, time, and network frequency spectrum [7, 8]. Here, energy consumption in 

multi-robot networks is not only subjected to power amplification and signal processing tasks, 

but, to a major extent, is also subjected to additional complications owing to the motion of 

robots. In particular, the limited range of communication devices results in increasing power 

consumption with increasing distance between robots owing to diminishing signal strength 

and increasing interference. As a result, a power consumption threshold must be applied to 

manage power consumption, which can result in the loss of network connectivity with 

increasing robot distance [9, 10]. In addition, the frequency spectrum of multi-robot networks 

must be strictly limited to insure inter-network independence. Accordingly, the number of 

channels is few, particularly for broadband systems, and these results in co-channel 

interference in the form of transmission collisions that occur when two concurrent 

transmissions lie within the time-varying interference range of each link, and result in the 

failure of both transmissions. Accordingly, energy efficiency and frequency spectrum 

efficiency in wireless energy-constrained multi-robot networks have generated increasing 

attention recently. 

Power control is an important method employed in interference management, and its 

adoption can mitigate interference as well as reduce energy consumption. Observations 

regarding the inducement of collisions and the opportunities for concurrent transmission in 

wireless networks were employed to develop an efficient interference-aware power control 

protocol with increased network throughput [11, 12]. However, existing studies focus on both 

resource allocation and interference coordination, the hot topics are mainly developed for 

heterogeneous networks, particularly in dense scenarios of 5G technologies. The limitations of 

conventional technology make it difficult to achieve further ascension of network capacity and 

spectrum or energy efficiency. An analysis of the effects of co-channel interference in 

frequency-hopping ad hoc inter-networks employing synchronized cooperative broadcast 

demonstrated that co-channel interference in such networks significantly degraded network 

throughput [13]. A low-complexity spectrum allocation scheme was proposed for constraining 

co-channel interference in a cognitive radio network, and the approach simultaneously 

achieved efficient power control and network throughput [14]. Another study demonstrated 

that multi-robot networks should maximize their energy efficiency to accommodate the 

limited onboard energy of robot communication devices, and thereby improve the quality of 
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communication between multi robot entities [15]. In addition, an energy-efficient bandwidth 

allocation scheme was proposed for wireless networks to meet quality of service (QoS) 

demands during resource allocation [16].  

We note that gaps exist between studies focused on power allocation and interference 

coordination problems in multi-robot networks [17]. These are particularly challenging tasks 

to address for multi-robot networks because interference is a critical problem influencing the 

communications between robots, and thereby negatively affecting collaboration between 

groups of networking robot entities, which becomes more severe when the communication is 

dominated by line of sight (LoS) channels [18]. Moreover, the mobility of multiple robot 

entities can induce Doppler shifts in the transmitted signals, which generates severe 

interference at higher communication frequencies. Also, adjacent clusters of robot entities are 

subject to interference from each other during uplink and downlink network communications 

[19]. Therefore, the problem of interference can be mitigated by diversifying the frequency 

spectrum or by enabling efficient coordination among the communication transmissions in 

multi-robot networks [20]. 

The present study addresses the above-discussed issues in multi-robot networks by 

proposing a group-centric network organization that applies the promising expansion 

capabilities of multiple-input multiple-output (MIMO) and full duplex systems for 

maximizing the throughput of the network under the impacts of Doppler frequency shifts and 

external jamming. The primary contributions of the present study are summarized as follows. 

1) A two-tier group-centric hierarchical framework is adopted for maximizing the overall 

throughput of the multi-robot network. The framework includes a single centralized 

processing node (CPN) with N MIMO antennas, cluster head nodes (CHNs), and scattered 

cluster member nodes (CMNs). The issues associated with MIMO are addressed by equipping 

each of the individual robot entities with a single antenna operating in full-duplex 

communication modes. Here, we take advantage of the ability of each robot to operate in 

different full-duplex modes by adopting two mode types, including an out-of-band full-duplex 

(OBFD) mode, where the uplink and downlink are conducted in orthogonal channels, and an 

in-band full-duplex (IBFD) mode, where the uplink and downlink channels are in the same 

frequency band. In other words, the individual robots may engage in transmitting and 

receiving in distinct frequency or co-frequency modes simultaneously. 

2) The proposed power allocation with interference coordination formulation accounts for 

three types of the interference, including cross-tier, co-tier, and mixed-tier interference signals 

with CHNs operating in both OBFD and IBFD modes, and their signal-to-noise-ratios (SNRs) 

are respectively derived under the impacts of Doppler frequency shifts and external jamming. 

3) Preliminary investigation using five different optimization algorithms revealed that the 

iterative call-back optimization algorithm provided the best optimization performance based 

on its computational speed and the high performance of the obtained network. 

The remainder of this paper is organized as follows. Section 2 describes the hierarchical 

network, communication and control technologies in the related work. Section 3 introduces 

the full-duplex downlink transmission scheme for CPNs, and derives approximations of the 

SNR values obtained under cross-tier, co-tier, and mixed-tier interference signals between the 

CPN and CHNs operating in OBFD and IBFD modes. These factors are then combined to 

formulate the proposed power allocation with interference coordination problem. Section 4 

presents the centralized and decentralized optimization algorithms proposed for solving the 

power allocation with interference coordination problem. Then, the results of simulations are 

analyzed in Section 5 to investigate the impacts of the number of MIMO antennas employed in 

the CPN of the network and the number of clusters employed within the network on network 
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throughput. Finally, the conclusions of the study are drawn in Section 6. 

2. Related Work 

2.1 Hierarchical Network 

Multi-robot networks that accommodate multiple states will improve the environmental 

adaptability of the network by accounting for the dynamically varying characteristics of 

diverse robots with respect to communication modes, waveforms, network operations, and 

capabilities. Therefore, a common framework is conducive to the integration of heterogeneous 

networks, and applying a group-centric approach will increase the scope of network 

applications. Accordingly, the group-centric framework illustrated in Fig. 1 is adopted, which 

presents an overall structure having the characteristics of heterogeneity, self-organization, and 

decentralized control. Here, wireless communication is provided by the single CPN with N 

MIMO antennas, while the individual robot entities are still equipped with single antennas 

operating in full-duplex modes. 

Subgroup

 Subgroup

Subgroup

Subgroup

N Antennas

kth Robot

CPN

 
Fig. 1.  Overall group-centric framework of the proposed multi-robot network including the centralized 

processing node (CPN) with N MIMO antennas communicating with subgroups 

 

The two-tier hierarchical group-centric mapping structure illustrated in Fig. 2 is adopted to 

achieve distributed and grouped communications. Network management in the first tier of 

sub-groups operates via intra-network communication through the CPN and CHNs, and that in 

the second tier operates via inter-network communication between CHNs and CMNs. 

Moreover, the nodes in the second tier are generated with different function domains by S 

clusters in the first tier via either adaptive election or mandatory assignment according to the 

different requirements and characteristics of the multi-robot network. In addition, the 

decentralized subgroups adopt self-organizing modes for K robot entities, which is convenient 

for sharing information randomly. 
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Fig. 2.  Two-tier hierarchical mapping structure of the proposed multi-robot network including cluster 

head nodes (CHNs) and cluster member nodes (CMNs)  

2.2 MIMO & Full-duplex 

Further advancements in the transmission capacity of wireless communication networks are 

applicable toward enhancing the performance of multi-robot networks. For example, MIMO 

technology is a promising method for increasing the transmission capacity of mobile 

communications systems by exploiting multipath communications between multiple 

transmission and receiving antennas to reduce latency, enhance energy efficiency, and 

mitigate channel fade [21, 22]. In fact, Heliot et al. [23] demonstrated that MIMO technology 

can improve the spectrum efficiency and energy efficiency of wireless networks 

simultaneously. The developed network based on MIMO was demonstrated to outperform 

conventional networks whereas the existing methods are not incommensurate with the 

dynamic deployment and flexible configuration in the multi-robot networks.  

We also note that the development of 5G technology has demonstrated the advantages of 

full-duplex communication systems in terms of high communication rate and spectrum 

utilization [24]. Here, full-duplex wireless nodes have a demonstrated capability for 

accommodating simultaneous transmission and reception in the same frequency band, 

therefore they can effectively double the data transmission rate [25]. In addition, Do et al. [26] 

developed a power-time allocation scheme for a full-duplex wireless powered communication 

network based on residual self-interference subject to energy causality constraints. 

2.3 Mobility & Coordination 

The present work focuses on aerial robots, such as UAVs (also known as drones), owing to 

their high mobility and flexible deployment in three-dimensional (3D) space. A region of 3D 

space can be explored randomly by multiple aerial robots with dynamically varying locations 

and velocities, based on a random mobility model like the random waypoint (RWP) model 

[27]. However, most mobility models intended specifically for multiple aerial robot entities 

are mission-based control patterns, and the connectivity-oriented control models employed 

assume that network connectivity is self-organizing with only local information [28]. In this 

paper, multiple robot entities can adjust their locations or trajectories to maintain favorable 

LoS channels based on the locations and/or movements of the CPN or CHNs. Moreover, 

resource management in the proposed multi-robot network is conducted based on two 

different control methods, including centralized management and distributed optimization. In 

centralized management, the CPN acts as a centralized processing center to control the CHNs, 

and the CHNs manage the power and frequency resources in the responding subgroups, which 

achieves global, hierarchical, and direct resource management. Distributed optimization is 

employed when unforeseeable problems arise in scattered CMNs, CHNs, or the CPN to 
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recover good communication performance by implementing a local self-optimization function 

from the bottom up, which overcomes bottleneck constraints in the overall network. 

2.4 Communication & Interference 

We note that existing quantization errors and coupling effects will lead to instability in 

multi-robot networks. Accordingly, a range of complex properties deserves to achieve 

efficient information processing and functional interactions between the network nodes. The 

relaying retransmission forward and the active learning route conduct as propellers. Moreover, 

error correction and increased signal amplification can be utilized to further improve the 

reliability of communications in practical applications. In addition, the communication 

process of multi-robot networks requires high-rate and wideband data transmission, which 

introduces specific interference coordination problems, particularly for intra-tier and inter-tier 

communications between sub-groups using frequency-division duplex (FDD) modes. 

In this paper, the CPN utilizes a zero-forcing (ZF) precoding method to eliminate 

self-interference in transmission caused by multiple antenna channels. While these channels 

are mainly dominated by LoS components, limited multipath fade may also be present due to 

ground reflections, where the effect is mainly based on path loss. At the same time, the high 

mobility of the robots indicates that the channels may be affected by Doppler frequency shifts, 

which will affect spectrum allocation directly. In consequence, we employ the Clarke flat fade 

channel model [29] to approximate the influence of Doppler frequency shifts and consider 

external jamming as well. The complexity of the communication system is reduced by 

assuming that all transmissions in the multi-robot network are completely synchronized, and 

the CPN can obtain accurate channel state information (CSI) in the time-division duplex (TDD) 

mode by means of channel reciprocity. Furthermore, each sub-group implements the FDD 

mode to improve the overall throughput of the network. 

3. System Model & Problem Formulation 

3.1 Full-Duplex Modes 

According to the literatures on full-duplex, each robot can operate in different full-duplex 

modes, which will be categorized into two types broadly: out-of-band full-duplex OBFD (the 

uplink and downlink are conducted in orthogonal channels) and in-band full-duplex IBFD (the 

uplink and downlink channels are in the same frequency band). In other words, they may refer 

to transmitting and receiving in distinct frequency or co-frequency modes simultaneously. 

Considering that the CPN can communicate wirelessly with the CHNs and CMNs 

simultaneously, different spectrum allocation methods will lead to diverse interference 

coordination problems in the transmission process. We address this issue by dividing the 

available frequency band into two components F1 and F2, and assume that the uplink channel is 

F1 and the downlink channel is F2 [30]. As such, the selection of F1 or F2 for channel modes 

will directly determine the full duplex modes corresponding to the CHNs and CMNs, which 

generates different types of co-tier and cross-tier interference, as illustrated in Fig. 3. If a CHN 

selects F1 as the uplink channel, then the CHN works in the OBFD mode, and if a CHN selects 

F2 as the downlink channel, then the CHN works in the IBFD mode. In this case, we refer to 

the set of nodes working in the OBFD mode as SO, and the other nodes working in the IBFD 

mode as SI, where |SO SI| = S, and SO  SI = . 
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Fig. 3.  Interference types in the hierarchical mapping structure of the multi-robot network: (a) 

interference for downlinks in the out-of-band full-duplex (OBFD) mode (b) interference for downlinks 

in the in-band full-duplex (IBFD) mode 

 

The present work determines network throughput based on the capacities of the downlink 

channels because when the TDD mode is employed by the CPN, and the capacity requirement 

of the downlink channels is much greater than that of the uplink channels. According to the 

preceding discussion, network interference can be divided into three components, including 

cross-tier, co-tier, and mixed-tier interference signals, which depend upon the CHNs in sets SO 

and SI.  

3.2 Interference Coordination 

3.2.1 Cross-Tier Interference 

This subsection considers the cross-tier interference arising at CMNl from channel F1 of CHNi 

in Fig. 3(a) when some CHNs operate in the OBFD mode, which exist in set SO, then the 

OBFD modes are also selected in the corresponding subgroups. Here, the signal received by 

CMNl can be expressed as 
 

2 2 2 2( ) ( ) ( ) ( )
l l l i l i l

O

CMN P M P M H M H M

i S

y x t x t j t n t


 = + + + h W h   (1) 

 

where 1

2 2and
l i l

N

P M H M

 C Ch h  represent the fading channel matrix with path loss from the 

CPN to CMNl , respectively, and the Doppler frequency shifts from CHNs to CMNl, where all 

of them are accordance with the complex domain C, N KCW  is a precoding matrix for the 

CPN communicating with CMNs, 
2 ( ) ~ (0, / )

lP M CPx t CN P K  and 
2 CH( ) ~ (0, )

i lH Mx t CN P  are 

signals in compliance with the complex normal distributions of the transmission power 

parameter PCP in the CPN and the transmission power parameter PCH in CHNs, respectively, 

and j(t) and n(t) respectively represent an external jamming signal with a variance of σJ
2 and 

natural Gaussian noise with a variance of σN
2. Therefore, the SNR of CMNl is simply given as 
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The SNR values of the other CMNs under these circumstances can be similarly derived. 

3.2.2 Co-Tier Interference 

Considering the diverse full duplex modes operated in CHNs, we firstly consider the co-tier 

interference arising at CHNi from channel F2 of CHNk in Fig. 3(a) when some CHNs operate 

in the OBFD mode, which exist in set SO, then the OBFD modes are also selected in the 

corresponding subgroups, and CHNk is in SI. Hence, the signal received by CHNi is 
 

2 2 2 2( ) ( ) ( ) ( )
i i i i k i k

I

O

CHN P H P H CH CH CH CH

k S

y x t x t j t n t


= + + +h G h   (3) 

 

where 1

2 i

N

P H

Ch  and 
2i kCH CH Ch respectively represent the fading channel matrixes 

between the CPN and CHNi, and CHNi and CHNk, 
N SCG  is a precoding matrix for the 

CPN communicating with CHNs, 
2 ( ) ~ (0, / )

iP H CPx t CN P S and 
2 CH( ) ~ (0, )

i kCH CHx t CN P  

represent signals obeying the complex normal distributions of parameters PCP and PCH, 

respectively. Hence, the SNR of CHNi in OBFD mode is 
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On the contrary, when some CHNs operate in the IBFD mode, which exist in set SI, then the 

IBFD modes are also selected in the corresponding subgroups, and CHNk is in SI. As such, we 

consider the co-tier interference arising at CHNi from channel F2 of CHNk in Fig. 3(b), and the 

signal received by CHNi is given as follows. 
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Here, 
2i imCH CM Ch  represents the fading channel matrix between CHNi and CMNs in the 

same subgroup, and 
2 CM( ) ~ (0, )

i imCH CMx t CN P  is a signal subject to the complex normal 

distribution of parameter PCM in CMNs. Based on this model, the SNR of CHNi in IBFD mode 

is given by 
2
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3.2.3 Mixed Interference 

Considering the diverse full duplex modes operated in CHNs, we firstly consider the mixed 

interference at CMNm due to the cross-tier interference arising from channel F2 of the CPN and 

the co-tier interference arising from channel F1 of CHNj in SO, as shown in Fig. 3(a), when 

some CHNs exist in set SO. Therefore, the signal received by CMNm is given as follows. 
 

2 2 2 2

\

2 2

( ) ( )

( ) ( ) ( )

m i im i im j im j im

O

i i

O

CHN CH CM CH CM CH CM CH CM

j S i

P H M H

y x t x t

x t j t n t



= +

+ + +

h h

h W

   (7) 

 

Here, 2i imCH CM Ch  and 
2j imCH CM Ch respectively represent the fading channel matrixes 

for CMNm connecting with CHNi in the same subgroup and connecting with CHNj in the other 

subgroup, and 
2 CH( ) ~ (0, )

i imCH CMx t CN P  and 
2 CH( ) ~ (0, )

j imCH CMx t CN P  are signals subject to 

the complex normal distributions of parameter PCH. We note here that the cross-tier 

interference in CMNs generated by the CPN can be eliminated by applying the forced-zero 

precoding method. Therefore, the mixed interference SNR of CMNm can be defined by 
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On the contrary, when some CHNs exist in set SI, we consider the mixed interference at 

CMNm due to the cross-tier interference arising from channel F2 of the CPN and the co-tier 

interference arising from channel F2 of CHNk in SI, as shown in Fig. 3(b), Therefore, the signal 

received by CMNm is given as follows. 
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Here, 
2k imCH CM Ch  represents the fading channel matrix between CHNk in the other 

subgroup and CMNm, and 
2 CH( ) ~ (0, )

k imCH CMx t CN P  represents a signal obeying the complex 

normal distribution of parameter PCH. Similarly, the cross-tier interference in CMNs generated 

by the CPN can be eliminated by applying the zero-forcing precoding method. Therefore, the 

SNR of CMNm is defined as 
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3.3 Simultaneous Power Allocation and Interference Coordination 

The complicated co-tier and cross-tier interference problems associated with the different 

mode selections of CHNs and CMNs make it necessary to assign modes to the network nodes 

in advance. Therefore, we model the interference coordination problem as a specific 

optimization problem using 0-1 integer programming to maximize the overall throughput of 

the network. According to Shannon's theorem, the overall throughput of a multi-robot network 

can be obtained as follows. 
 

( ) ( ) ( )2 2 2log 1 log 1 log 1
  

= + +

= + + + + +  k k i i j j
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O I
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k K i S j S

C C C C
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Here, the throughputs CCMN, CO
CHN, and CI

CHN represent those of CMNs for the CPN 

operating in the TDD mode, those of CHNs operating in OBFD modes, and those of CHNs 

operating in IBFD modes, respectively, while BMk, BHi, and BHj respectively denote the channel 

bandwidths for the kth CMN, and the ith  and jth CHNs. Then, we set a vector 

 1 2, , ,
T

Sx x x=x  to denote the full duplex modes of CHNs, where xi is a binary variable 

with the following connotations. 
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1, CHN is operated in  IBFD  mode
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        (12) 

 

We also set a variable wi for adjusting the power allocation in the ith  CHN: 
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This yields the power allocation weight vector  1 2, , , , ,=w i Sw w w w  for the S CHNs, 

which is defined independently of x. Therefore, the overall optimization of network 

throughput problem can be derived as follows. 
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Obviously, the power allocation with interference coordination problem in (14) is a 

complex combinatorial optimization problem, and includes a feasible domain with 

non-convex characteristics. Accordingly, we note that the lack of dependency between x and 

w simplifies the solution process greatly because the throughput C(x) can be optimized 

separately from C(w) even though the throughput is a function of both x and w.  

The computational complexity of the proposed simultaneous power allocation and 

interference coordination scheme includes the following parts: 

1) In the first step of C(x,w), the complexity of the first accumulation component 

acquisition is O(K•S) and the remainings are O(S2), respectively, which are quite fixed. 

2) In the second step, since the complexity of 0-1 variable with a tree search in the feasible 

domain is O(log2(S)), and the continunous variable is determined by the convergence speed of 

the function C(w) in the feasible domain whereas it will be obtained the optimum to some 

degree ∆ and the iterations T, which may be regarded as O(∆•T).  

Hence, the total complexity of the proposed combinatorial optimization problem is no less 

than in the order of O(K•Slog2(S)•(∆•T)). We note that the traditional optimization method 

requires an inordinately long time to solve the problem, while the centralized iterative 

optimization [31] and decentralized optimization algorithms, such as particle swarm 

optimization (PSO) and steepest descent [32, 33], can be considered to be more suitable for 

solving this power allocation problem compared with conventional optimization methods, 

which are deserved to be settled further. 

4. Diverse Optimization Algorithms 

4.1 Centralized Iterative Optimization 

4.1.1 Iterative Call-back Optimization Algorithm 

Iterative optimization methods [31] provide an optimal solution to non-convex optimization 

problems, and they can be applied the fast gradient updating for the throughput C. Therefore, the 

problem given in (14) can be simplified by decomposing it into the following two subproblems, 

and achieve the goal for accelerating the process of optimization in each iteration when the 

variables  (0)

1 2, , , , ,i Sx x x x=x are temporality fixed. 
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Here, w* is first obtained based on an optimization of (14) with respect to w while 

holding the initial assignments for the full duplex modes of the CHNs x(0) fixed. Then, x* is 

obtained based on an optimization of (14) with respect to x while holding w* fixed. This 

process involving (16) and (17) is repeated over multiple iterations until the results satisfy 

the condition 
( 1) *( )*t t + − C C , where ε represents an arbitrary parameter of precision. 

During the iterative process, the weight parameters are adjusted using the gradient descent 

algorithm as follows: 

 
* * *( 1) ( ) ( )( , )+ = − w xw w

t t t

t C     (18) 

 

where the attenuation rate αt > 0 is set to ensure that w varies in the range [0,1], and 
( )*( , )tC x w is the gradient of (14). The ICO algorithm is defined in Algorithm 1. 

 

Algorithm 1. Iterative call-back optimization (ICO) algorithm 

Inputs: initial attenuation rate α0, acceptable precision error ɛ,and maximum of iterations tmax 

Outputs: x, w, and optimal throughput C  

Initialize parameters: set the seed of the random number generator, and the initial x(0) 

While t≤ tmax 

        Compute the optimal weights
k

w
*  for C subject to x 

t-1 according to (16) 

Adjust the attenuation rate αt  

Obtain the optimal modes x* according to (17) 

Compute the gradient of the throughput function ( )*
( ), x w

tC  

        Update the weights w* according to (18) 

If the restricts satisfied the condition: ( 1 *) ( )* +
− C C

t t  

Update the optimal weights ( )*1+
w

t  

Else  

Traceback the optimal weights ( )*
w

t  

End 

End 

Determine the x, w, and optimal throughput C 

4.1.2 Iterative Search Algorithm with Steepest Descent 

The iterative search with steepest descent (IS-SD) algorithm similarly decomposes (14) into 

subproblems involving x and w, and searches for optimal solutions along the gradients of C with 
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respect to x and w, i.e., dx = −grad(C, x); dw = −grad(C, w), until the total gradient ||d||2=||dx||2 + 

||dw||2 is less than an acceptable error value ɛ > 0. The IS-SD algorithm is defined in Algorithm 2. 
 

Algorithm 2. Iterative search with steepest descent (IS-SD) algorithm 

Inputs: acceptable error ɛ > 0 and maximum number of iterations kmax 

Outputs:  x, w, and C 

Initialize parameters: set the seed of the random number generator, k = 1, and initialize x(0), w(0), dx
(0) = 

−grad(C, x(0)), and dw
(0) = −grad(C, w(0)) 

Determine the scale for search, ||d||2=||dx||2+||dw||2  

If   ||d||2 < ɛ 

Output x, w, and C   

End process 

Else   

While k ≤  kmax 

    Calculate the optimal extension parameter λk: 

   

( ) ( -1) ( -1) ( -1) ( -1)

0

( ) ( -1) ( -1) ( -1) ( -1)

0

arg min ( , )

arg min ( , )





 

 





 = +



= +


C x d w

C x w w

x

w

k k k k k

x x

k k k k k

w w

 

  Set ( 1) ( ) ( ) ( 1) ( ) ( )
,

k k k k k k k k

x w + +
= + = +x x d w w w  

      If ( 1)
[0,1],

k +
x  and ( 1)

[0,1]
k +

w  

         Calculate dx = −grad(C, x), dw = −grad(C, w) 

   Set k = k + 1 

      Else 

         Transform x(k+1), w(0) into the range [0,1] 

  End 

      If   ||d||2 < ɛ   

         Output x and w   

         Exit While 

      End 

End 

End 

4.2 Decentralized Swarm Optimization 

4.2.1 Independent Subspace of Particle Swarm Optimization Algorithm 

The particle swarm optimization (PSO) algorithm [32, 33] is newly developed evolutionary 

technique. Due to the characteristics of efficient search, easy implementation, and quick 

convergence, nowadays, PSO has gained much attention to diverse issues in different fields, 

especially for solving multivariable and nonlinear problems. In this section, we bind the 

concepts of independent subspace in the PSO process to optimize the variables in the network 

throughput. 

The vectors x and w serve as two independent S-dimensional search subspaces for the 

agents or particles employed as a swarm in the PSO. Here, the particles represent candidate 

solutions that are varied by iteratively moving the particles within the individual search 

subspaces to obtain x(t) and w(t) values for each particle at the tth iteration. Then, the throughput 

C(x(t), w(t)) values obtained at the tth iteration from (14) are compared for all particles 

individually to determine the best fitness values obtained thus far for each particle. These 

values are defined as the individual_ proportion (or xi
(t)) for x(t) and the individual_weight (or 

wi
(t)) for w(t). In addition, the highest fitness values obtained for the individual swarms as a 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021                                229 

 

 

whole are defined as the global_ proportion (or xg
(t)) for x(t) and the global_weight (or wg

(t)) for 

w(t) until the iterative gradient is less than an acceptable error value ɛ > 0. 

The velocity, position, and direction of motion for each agent particle in the search over x(t) 

are respectively updated as follows. 

 

( )( 1) ( )

1 1 2 2mod ,2t t c c + = + +v v     (19) 

 

( )( 1) ( ) ( 1)mod ,2t t t+ += +x x v      (20) 

 

Here, the terms v(0), x(0),  and d(0) are initialized randomly, mod(·) represents the general 

function that returns the decimal portions when one number is divided by another, and the 

parameters c1, c2, ξ1, and ξ2 are random variables with normal distributions in the range [0, 1]. 

In addition, the direction of motion for each particle in the search over w(t) are updated: 
 

( ) ( )( 1) ( ) ( ) ( ) ( )

1 1 2 2

t t t t tc c  + = + − + −
i g

d d w w w w
.   

(21) 

 

Here, the dynamic inertial weight ω(t) = ωs − (ωs − ωe)(Kmax − k)/Kmax, where ωs is the initial 

weight, ωe is the convergent weight of the iteration, and k and Kmax are the current iteration 

number and the maximum number of iterations, respectively. Standard values here are 

generally ωs = 0.9 and ωe = 0.4.  Considering the motion dynamics and time-sensitivity of the 

swarms, we also introduce a probe-response mechanism to ensure that the entire population of 

swarm particles respond to dynamic changes in their external environment by updating the 

population after detecting changes in the environment. This enables the swarm to 

appropriately track the dynamic extrema, while avoiding the possibility of the swarm particles 

falling into local optima. The adaptive environmental updating process is given as follows. 

 

( )
( )
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i
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i

w C x w C x w
w

w C x w C x w

   (22) 

 

The IS-PSO algorithm is defined in Algorithm 3. 

Algorithm 3. Independent subspace particle swarm optimization (IS-PSO) algorithm   

Inputs: maximum number of iterations kmax, swarm size smax, and learning factors c1 and c2 

Outputs: x, w, and C 

Initialize swarms  x(0) and w(0), k = 1, velocity v(0), direction d(0),  C_max, CP_max, and P_index 

While k ≤ kmax 

Calculate the fitness of each particle: C(x(k-1), w(k-1)) 

Select  the best particles: [C_max, index] = max(C(x(k-1), w(k-1))), xg
(t) = x(k-1)(index), wg

(t) = 

w(k-1)(index), xi
(t) = x(k-1), wi

(t)= w(k-1), C_max = C(k-1) 

For i = 1 to smax 

Update x according to (19) and (20) 

Update w according to (21) and (22) 

End 

For i = 1 to smax 

Update the global and individual optimums 

If C(k)(i) ≥ C_max 
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        xg
(t) = x(k)(i), wg

(t) = w(k)(i), C_max = C(k)(i) 

End 

If C(k)(i) ≥ C(k-1)(i) 

       xi
(t) = x(k)(i), wi

(t)= w(k)(i), C(k-1)(i) = C(k)(i) 

End  

[C, index] = max(C(x, w))  

If   ΔC < ɛ 

Output x= xg
(t), w= wg

(t), and C  

End process 

End 

End 

4.2.2 Double Genetic Algorithm 

The double genetic algorithm (DGA) is decomposing (14) into subproblems involving x and w, 

and select crossover or mutation for optimal solutions along the random position with respect to 

x and w until the total gradient ΔC is less than an acceptable error value ɛ > 0. The DGA is 

defined in Algorithm 4. 
 

Algorithm 4. Double genetic algorithm (DGA) 

Inputs: maximum number of iterations kmax, population size, crossover rate, mutation rate, C_max 

Outputs: x, w, and C 

Initialize populations  x(0)  and w(0), k = 1, position, and  C_max 

While k ≤ kmax 

Calculate the fitness of each population: C(x(k-1), w(k-1)) 

Select the best individuals [C_max, position] = max(C(x, w)), xi
(t) = x(k-1)(position), wi

(t) = 

w(k-1)(position) 

Select roulette wheel, find the maximum and elite selections directly according to the cumulative sum 

of the fitness values 

Set the random number random 

If random ≤ crossover rate  

     Select crossover 

Cross two new populations from random positions: x(k-1) → xCw
(k-1) and w(k-1) → wCx

(k-1) 

End 

If random ≤ mutation rate  

    Select mutation 

Mutate two new populations from random positions: xCw
(k-1) → xMCw

(k-1) and wCx
(k-1) → wMCw

(k-1) 

End 

If   ΔC < ɛ 

Output x= xi
(t), w= wi

(t), and C  

End process 

End 

Generate two new populations: x(k) = xMCw
(k-1) and w(k) = wMCw

(k-1) 

End 

4.2.3 Greedy Algorithm with Penalty Function 

The greedy algorithm with penalty function (GRA-PF) is decomposing (14) into subproblems 

involving x and w, and select the penalty function for optimal solutions along the throughput 

with respect to x and w until the total gradient ΔC is less than an acceptable error value ɛ > 0. 

Here, the penalty function is ( ) ln (1 )i iB w w= −w , which is employed to penalize the 

throughput as C’ = C + rB(w). The GRA-PF is defined in Algorithm 5. 
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Algorithm 5. Greedy algorithm with penalty function (GRA-PF) 

Inputs: number of CHNs S, maximum number of iterations kmax, acceptable error ɛ > 0,  barrier factor r 

Outputs:  x(index), w, C’_max 

Initialize parameters: x(0), w(0), k = 1, contraction coefficient (0,1), C_max 

While k ≤ kmax 

ΔC’ = 0, index = random 

For i = 1 to S Do 

Calculate the increment: ΔC’
k = C’(x(k), w(k)) − C’(x(k-1), w(k-1)) 

If ΔC’ ≥ 0 

    x(k)(index) = 1 − x(k-1)(index) 

Else if   ΔC’
k ≥ ΔC’ 

             ΔC’ = ΔC’
k, index = i  

End 

End 

w(k)(index) =arg max ( C’(x(k), w(k)) ) 

End 

If C’ ≥ C’_max 

C’_max = C’ 

End 

If rB(x(k)) < ɛ  

Output x(index), w   

Exit Do 

Else  

r = r 

End 

5. Experimental Results and Analysis 

5.1 Simulation Approach 

The effectiveness of applying the proposed power allocation with interference coordination 

method presented in Section 3 to the multi-robot network presented in Section 2 is validated 

through numerical investigations and event-driven simulations using MATLAB® . Specifically, 

we first consider the effect of the number of MIMO antennas N employed in the CPN of the 

network on network throughput for a network composed of 100 robot entities configured in 10 

equally sized clusters, with N in the range of [2, 32]. We then consider the effect of the number 

of robot clusters employed in the network on network throughput for a network composed of 

200 robot entities configured in generally equally sized clusters varying in number within the 

range of [10, 40] in increments of 5, with N = 32. In addition, the results obtained with the 

different optimization methods presented in Section 4 for solving the problem are compared, 

and their respective advantages and disadvantages are analyzed. The simulations employ 

multiple robot entities and entity clusters moving randomly based on an RWP model 

according to the 3D spatial distribution and the technical characteristics of multiple robot 

networks. Meanwhile, the order of the internal actions of the network is based on existing 

head-cluster rules, which ensures network organization and the avoidance of collisions 

between robot entities. In terms of the communication channels, the path loss, Doppler 

frequency shifts, and power fade effects under LoS conditions are fully considered, and the 

jamming power Pd obeys the normal distribution of the target transmission power. The 

specific parameters employed in the simulations are listed in Table 1. 
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Table 1. Parameters employed in the simulations 

Parameter Value 

Maximum coverage of CPNs, R 1000 feet 

Maximum coverage of CMNs, r 100 feet 

Carrier frequency, fd 1.215 GHz 

Bandwidth, B 20 MHz 

Transmission power of CPNs, PCP 68 dBm 

Transmission power of CMNs, PCM 53 dBm 

Noise spectral density −129 dBm/Hz 

Maximum Robot speed, vc 15 feet/s 

Avoidance radius, r 10 feet 

5.2 Verification Analyses 

5.2.1 Effect of Number of MIMO Antennas on Network Throughput 

The effect of the value of N on network throughput, the proportion of CHNs operating in the 

IBFD mode, and the total weights of power allocation are presented in Fig. 4, Fig. 5, and Fig. 

6, respectively, when the number of robots is 100 with 10 equally sized robot clusters. 

The results in Fig. 4 indicate that the network throughput increases with increasing N, but 

that the increase is periodic, with poorly configured numbers of antennas presenting 

approximately zero throughput. This is because the poorly configured numbers of antennas 

suffer from self-interference. Eliminating the self-interference between antennas for 

large-scale MIMO antenna configurations is an important research topic. In addition, the 

optimum network throughput obtained by the various optimization algorithms considered are 

generally similar, except that the IS-SD algorithm performs most poorly within the peak 

periods obtained in the range of N from 22 to 32. 
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Fig. 4.  Network throughput obtained by the various optimization algorithms with respect to the number 

of MIMO antennas employed for the CPN of the multi-robot network when the number of robots is 100 

with 10 equally sized robot clusters 
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Fig. 5.  Proportions of CHNs in the IBFD mode assigned by the various optimization algorithms with 

respect to the number of MIMO antennas employed for the CPN when the number of robots is 100 with 

10 equally sized robot clusters 

 

 

However, the IS-PSO and ICO algorithms are found to be superior to the other 

optimization algorithms in terms of the proportion of CHNs operating in the IBFD mode (Fig. 

5) and the weights of power allocation (Fig. 6). Here, we note that the IS-PSO and ICO 

algorithms are found to assign considerably higher proportions of CHNs to the IBFD mode, 

which achieves about 60% improvement than the other algorithms], while the assigned 

weights of power allocation are more energy efficient, particularly in the range of N from 22 to 

32. At the same time, the proportion of CHNs in the IBFD mode is found to vary little with 

respect to the value of N. Accordingly, the number of MIMO antennas has little effect on the 

selection of full-duplex modes. This is because the MIMO antennas are deployed on the CPN 

in the proposed network, and that has less effect on the overall interference coordination. 

Above all, the results illustrate that the value of N should be selected reasonably according to 

the network configuration. The results can be analyzed in detail by investigating which of the 

10 CHNs were assigned to the IBFD mode and their individual weights of power allocation for 

N = 32. These results further demonstrate the advantages of the ICO and IS-PSO algorithms, 

where these algorithms clearly assign more CHNs to the IBFD mode and apply smaller 

weights of power allocation for most of the CHNs compared with the other optimization 

algorithms. 
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Fig. 6.  Total weights of power allocation assigned to CHNs by the various optimization algorithms with 

respect to the number of MIMO antennas employed for the CPN when the number of robots is 100 with 

10 equally sized robot clusters 

5.2.2 Effect of Number of Robot Clusters on Network Throughput 

The effect of the number of robot clusters on network throughput, the proportion of CHNs 

operating in the IBFD mode, and the total weights of power allocation are presented in Fig. 7, 

Fig. 8, and Fig. 9, respectively, when the number of robots is 200 with N = 32. The results in 

Fig. 7 indicate that the emergent effect of the robot clusters becomes prominent when the 

number of CHNs lies within the range of [30, 35], which is about 13.04%–14.89% of the total 

number of robots in the network including the number of CHNs. Therefore, increasing the 

number of clusters to a certain extent can increase the overall network throughput. However, 

internal interference becomes a severe problem for further increases in the number of clusters, 

which increases the difficulty of coordinating network communication, and seriously restricts 

the overall communication capability of the network. Accordingly, applications of multi-robot 

networks require that a balance should be preserved between robot deployment density and 

communication capacity. 

In addition, we again note that the IS-PSO and ICO algorithms are superior to the other 

optimization algorithms in terms of the proportion of CHNs operating in the IBFD mode, Fig. 

8, and that the proportion of CHNs operating in this mode increases gradually with an 

increasing number of CHNs. Finally, we note from Fig. 9 that all of the considered 

optimization algorithms assigned fairly uniform total weights of power allocation regardless 

of the number of CHNs, except for the IS-SD algorithm, which again performed poorly for the 

most part. Furthermore, the FFD modes and weights of power allocation assigned by the 

optimization algorithms were analyzed in greater detail for a multi-robot network composed of 

400 robots and 40 CHNs with N = 32 by investigating which of the 40 CHNs were assigned to 

the IBFD mode and their individual weights of power allocation. These results further 

demonstrate the advantages of the ICO and IS-PSO algorithms compared with the other 

optimization algorithms. 
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Fig. 7.  Network throughput obtained by the various optimization algorithms with respect to the number 

of CHNs employed in the multi-robot network when the number of robots is 200 with N = 32 
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Fig. 8.  Proportions of CHNs assigned to the IBFD mode by the various optimization algorithms with 

respect to the number of CHNs when the number of robots is 200 with N = 32 
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Fig. 9.  Total weights of power allocation assigned by the various optimization algorithms with respect 

to the number of CHNs when the number of robots is 200 with N =32 
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5.2.3 Computational Complexity of the Optimization Algorithms 

The computation times required by the various optimization algorithms for solving the 

proposed power allocation with interference coordination problem when the number of robots 

in the multi-robot network is 400, the number of CHNs S varies from 10 to 70, and N = 32 are 

shown in Fig. 10. We note that the GRA-PF algorithm requires an inordinately long time to 

solve the problem, while the SI-SD algorithm provides a very rapid solution at small values of 

S owing to the simplicity of the steepest descent method, but the computation time increases 

rapidly with increasing S. In contrast, the ICO and IS-PSO algorithms require relatively small 

computation times to solve the problem, particularly at high values of S, which vary from 

between 50% to 75% of the computation time required by the DGA algorithm. We note that 

the time complexity of the five optimization algorithms considered is uniformly O(S3) when 

the number of robots remains constant. Yet, the ICO algorithm has a faster convergence rate, 

and therefore generally requires less computation time than the other algorithms considered. 
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Fig. 10.  Computation time required by the various optimization algorithms for solving the proposed 

power allocation with interference coordination problem when the number of robots in the multi-robot 

network is 400, the number of CHNs S varies from 10 to 70, and N = 32 

6. Conclusion 

The present work addressed the challenging problem of coordinating power allocation with 

interference management in multi-robot networks by proposing a two-tier group-centric 

hierarchical framework that applies MIMO technology and full duplex systems for 

maximizing the throughput of networks under the impacts of Doppler frequency shifts and 

external jamming. The proposed power allocation with interference coordination formulation 

accounts for three types of the interference, including cross-tier, co-tier, and mixed-tier 

interference signals with CHNs operating in both OBFD and IBFD modes, and their SNRs 

were respectively derived under the impacts of Doppler frequency shifts and external 

jamming. In addition, five optimization algorithms were applied for solving the combined 

power allocation and interference coordination. The iterative callback optimization algorithm 

was determined to provide the best optimization performance based on its computational 

speed and the high performance of the obtained network. It is hoped that the presented models 

will help pave the way for future researchers to design multi-robot networks with ultra-high 

communication capacities. 
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